

Assistant Professor
Department of Atmospheric & Oceanic Science
University of Maryland
4254 Stadium Drive
College Park, MD 20742

Telephone: (301) 405-7567
E-mail: poterjoy@umd.edu
Website: www.poterjoy.com

EDUCATION

Ph.D. in Meteorology, August 2014
The Pennsylvania State University, University Park, PA

B.S. in Meteorology and Applied Mathematics, May 2009 (Magna Cum Laude)
Millersville University of Pennsylvania, Millersville, PA

RESEARCH INTERESTS

Data assimilation, numerical weather prediction, probabilistic forecasting and verification, atmospheric dynamics and predictability, tropical cyclones, and mesoscale meteorology

PROFESSIONAL EXPERIENCE

University of Maryland, Department of Atmospheric and Oceanic Science, College Park, MD
Assistant Professor, August 2018 – present

NOAA Atlantic Oceanographic and Meteorological Laboratory, Hurricane Research Division, Miami, FL
Affiliate, August 2018 – present

NOAA Atlantic Oceanographic and Meteorological Laboratory, Hurricane Research Division, Miami, FL
National Research Council Research Associateship Postdoctoral Fellow, March 2017 – August 2018

Cooperative Institute for Mesoscale Meteorological Studies, NOAA National Severe Storms Laboratory, and the University of Oklahoma, Norman, OK
Postdoctoral Research Associate, August 2016 – March 2017

National Center for Atmospheric Research, Boulder, CO
Advanced Study Program Postdoctoral Fellow, August 2014 – August 2016

REFEREED JOURNAL PUBLICATIONS * Indicates graduate student or postdoc within research group

Walsworth*, A., E. Satterfield, and **J. Poterjoy**, 2023: Challenges for online observation error estimation revealed from idealized numerical experiments. *Mon. Wea. Rev.*, In press.

Santer*, H., **J. Poterjoy**, 2023: Evaluating contour boxplots as a method for visualizing ensemble uncertainty. *Mon. Wea. Rev.*, In press.

McCurry*, J., **J. Poterjoy**, L. Wicker, and K. Knopfmeier, 2023: Probabilistic analysis of severe convective storms through non-Gaussian data assimilation. *Mon. Wea. Rev.*, In press.

Kurosawa*, K. and **J. Poterjoy**, 2023: A statistical hypothesis testing strategy for adaptively blending particle filters and ensemble Kalman filters for data assimilation. *Mon. Wea. Rev.*, 151(1), 105 – 125.

Schwartz*, C. S., **J. Poterjoy**, G. S. Romine, J. R. Carley, D. C. Dowell, 2022: Short-term convection-allowing ensemble forecast sensitivity to resolution of initial condition perturbations and central initial states. *Weather and Forecasting*, 37(7), 1259 – 1286.

Poterjoy, J., 2022: Regularization and tempering for a moment-matching localized particle filter. *Quart. J. Roy. Meteor. Soc.*, 148(747), 2631 – 2651.

Poterjoy, J., 2022: Implications of Multivariate Non-Gaussian Data Assimilation for Multi-scale Weather Prediction. *Mon. Wea. Rev.*, 150(6), 1475 – 1493.

Schwartz*, C. S., **J. Poterjoy**, J. R. Carley, D. C. Dowell, G. S. Romine, and K. Ide, 2022: Comparing partial and continuously cycling ensemble Kalman filter data assimilation systems for convection-allowing ensemble forecast initialization. *Weather and Forecasting*, 37(1), 85 – 112.

Kurosawa*, K. and **J. Poterjoy**, 2021: Data assimilation challenges posed by nonlinear operators: A comparative study of ensemble and variational filters and smoothers. *Mon. Wea. Rev.* 149, 2369 – 2389.

Poterjoy, J., G. Alaka, H. Winterbottom, 2021: The irreplaceable utility of sequential data assimilation for numerical weather prediction system development: Lessons learned from an experimental HWRF system. *Weather and Forecasting*, 36, 661 – 677.

Feng, J., X. Wang., and **J. Poterjoy**, 2020: A Comparison of Two Local Moment-Matching Nonlinear Filters: Local Particle Filter (LPF) and Local Nonlinear Ensemble Transform Filter (LNETF). *Mon. Wea. Rev.*, 148, 4377 – 4395.

Poterjoy, J., L. J. Wicker, and M. Buehner, 2019: Progress in the development of a localized particle filter for data assimilation in high-dimensional geophysical systems., *Mon. Wea. Rev.* 147, 1107 – 1126.

Morozfeld, M., D. Hodyss, **J. Poterjoy**, 2018: Variational particle smoothers and their localization, *Quart. J. Roy. Meteor. Soc.* 2018, 144:806 – 825.

Poterjoy, J., R. A. Sobash, and J. L. Anderson, 2017: Convective-scale data assimilation for the Weather Research and Forecasting model using the local particle filter., *Mon. Wea. Rev.*, 145, 1897 – 1918.

Poterjoy, J., and J. L. Anderson, 2016: Efficient assimilation of simulated observations in a high-dimensional geophysical system using a localized particle filter. *Mon. Wea. Rev.*, 144, 2007 – 2020.

Poterjoy, J. and F. Zhang, 2016: Comparison of hybrid four-dimensional data assimilation methods with and without the tangent linear and adjoint models for predicting the life cycle of Hurricane Karl (2010). *Mon. Wea. Rev.* 144, 1449 – 1468.

Poterjoy, J., 2016: A localized particle filter for high-dimensional nonlinear systems. *Mon. Wea. Rev.*, 144, 59 – 76.

Poterjoy, J. and F. Zhang, 2015: Systematic comparison of four-dimensional data assimilation methods with and without a tangent linear model using hybrid background error covariance: E4DVar versus 4DEnVar. *Mon. Wea. Rev.*, 143, 1601 – 1621.

Poterjoy, J. and F. Zhang, 2014: Inter-comparison and coupling of ensemble and four-dimensional variational data assimilation methods for the analysis and forecasting of Hurricane Karl (2010). *Mon. Wea. Rev.*, 142, 3347 – 3364.

Poterjoy, J. and F. Zhang, 2014: Predictability and genesis of Hurricane Karl (2010) examined through the EnKF assimilation of field observations collected during PREDICT. *J. Atmos. Sci.*, 71, 1260 – 1275.

Poterjoy, J., F. Zhang, and Y. Weng, 2014: The effects of sampling errors on the EnKF assimilation of inner-core hurricane observations. *Mon. Wea. Rev.*, 142, 1609 – 1630.

Zhang, X., X.-Y. Huang, L. Yianyu, **J. Poterjoy**, Y. Weng, F. Zhang, and H. Wang, 2014: Development of an efficient regional four-dimensional variational data assimilation system for WRF. *J. Atmos. Oceanic Technolol.*, 31, 2777 – 2794.

Zhang, F., M. Zhang, and **J. Poterjoy**, 2013: E3DVar: Coupling an ensemble Kalman filter with three-dimensional variational data assimilation in a limited-area weather prediction model and comparison to E4DVar. *Mon. Wea. Rev.*, 140, 900 – 917.

Xie, B., F. Zhang, Q. Zhang, **J. Poterjoy**, and Y. Weng, 2013: Observing strategy and observation targeting for tropical cyclones using ensemble-based sensitivity analysis and data assimilation. *Mon. Wea. Rev.*, 141, 1437 – 1453.

Poterjoy, J. and F. Zhang, 2011: Dynamics and structure of forecast error covariance in the core of a developing hurricane. *J. Atmos. Sci.*, 68, 1586 – 1606.

MANUSCRIPTS UNDER REVISION OR SUBMITTED

Knisely*, J. and **J. Poterjoy**, Implications of Self-Contained Radiance Bias Correction for Data Assimilation within the Hurricane Analysis and Forecasting System (HAFS). *Weather and Forecasting*, Under revision

MANUSCRIPTS IN PROGRESS

Poterjoy, J. Non-parametric, Regime-dependent Likelihood Estimation for Non-Gaussian Data Assimilation.

Kurosawa*, K., **J. Poterjoy**. An Adaptive Blending of Particle Filters with Ensemble Kalman Filters for Convective-Scale Data Assimilation

Kurosawa*, K., **J. Poterjoy**. Augmented background perturbations to mitigate sampling errors: Experiments for a regional application of the NOAA Unified Forecast System.

Knisely*, J., **J. Poterjoy**, E. Satterfield, and W. Campbell. Scalable Bias Correction Techniques Investigated with a Low-dimensional Dynamical Model.

Szapiro*, N., F. Yang, and **J. Poterjoy**. Aggregate evaluation of liquid-bearing clouds in GFS physics over MOSAiC.

INVITED CONFERENCE AND WORKSHOP PRESENTATIONS

- Progress and long-term obstacles for tropical cyclone data assimilation and prediction, *35th Conference on Hurricanes and Tropical Meteorology*, New Orleans, LA, 2022
- Young Career Workforce and Student Panel, Panelist for *NOAA Unifying Innovations in Forecasting Capabilities Workshop*, College Park, MD, 2022
- High-dimensional Data Assimilation using Regularization and Iterative Resampling with the Local Particle Filter, *The International Symposium on Data Assimilation – Online*, Virtual meeting, 2021
- Tempered and Hybrid Particle Filter Methodology for Geophysical Data Assimilation, *25th Conference on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface*, AMS Annual Meeting, Virtual meeting, 2021
- Particle Filter-based Data Assimilation for Numerical Weather Prediction, *1st International Workshop in Data Assimilation*, Medellín, Columbia, 2019
- Benefits of a Localized Particle Filter Explored Using the AOML-UMD Ensemble Prediction System, *International Union of Geodesy and Geophysics General Assembly*, Montreal, Canada, 2019
- Regional Weather Prediction Using the Local Particle Filter in an Experimental HWRF Modeling System, *2nd ADAPT Symposium on "Advanced Understanding, Monitoring and Prediction of Weather, Climate and Environmental systems," State College, PA*, 2018
- Regional Weather Forecasting Using the Local Particle Filter, *5th International Workshop on Nonhydrostatic Models*, Tokyo, Japan, 2018
- Toward the Application of Particle Filters for Numerical Weather Prediction and Research, *The 8th Ensemble Kalman Filtering Workshop*, Sainte-Adele, Canada, 2018
- Localized Particle Filters for Weather Prediction and Research, *National Strategic Computing Initiative Workshop*, Arlington, VA, 2017

- Storm-Scale Weather Analysis and Prediction at the NOAA National Severe Storms Laboratory Using a Non-Gaussian Filter, 3rd *RIKEN International Symposium on Data Assimilation*, Kobe, Japan, 2017
- Probabilistic Weather Analysis and Prediction Using the Local Particle Filter, *Advances in Data Assimilation, Predictability, and Uncertainty Quantification, American Geophysical Union Fall Meeting*, San Francisco, CA, 2016
- Efficient Assimilation of Observations via a Localized Particle Filter in High-Dimensional Geophysical Systems, *Perspectives on Model-informed Data Assimilation, SIAM Conference on Uncertainty Quantification*, Lausanne, Switzerland, 2016
- Hybrid Four-Dimensional Data Assimilation with and without Tangent Linear Model Operators. *6th EnKF Workshop*, Buffalo, NY, 2014

INVITED LECTURES

- The Mathematics, Science, and “Art” of Data Assimilation for Environmental Prediction, *Department of Meteorology, Millersville University*, Millersville, PA, 2023
- Big Data, Very Big Computers, and the Endless Pursuit for an “Honest” Weather Prediction System. *University of Delaware, Department of Geography*, Wilmington, DE, 2019
- Bayesian Data Assimilation Within a Regional Modeling Framework. *German Meteorological Service Seminar*, Offenbach, Germany, 2019
- From Toy Models to NWP: Leveraging HWRF for Data Assimilation Development. *NOAA Hurricane Weather Research and Forecasting Model Seminar*, College Park, MD, 2019
- Big Data, Very Big Computers, and the Endless Pursuit for an “Honest” Weather Prediction System, *Department of Meteorology, Millersville University*, Millersville, PA, 2019
- Progress in the Development of a Localized Particle Filter for Weather Prediction, *Earth System Science Interdisciplinary Center*, College Park, MD, 2019
- Progress in the Development of a Localized Particle Filter for Regional Weather Prediction, *NASA Goddard, Global Modeling and Assimilation Office*, Greenbelt, MD, 2018
- Progress in the Development of a Localized Particle Filter for Numerical Weather Prediction and Research, *Japan Meteorological Agency, Meteorological Research Institute*, Tokyo, Japan, 2018
- Nonlinear Data Assimilation for Geophysical Analysis, Prediction, and Research, *North Carolina State University, Department of Marine, Earth, and Atmospheric Sciences*, Raleigh, NC, 2017.
- Progress in the Development of a Localized Particle Filter for Atmospheric Analysis, Prediction, and Research, *University of Maryland, Department of Atmospheric and Oceanic Science*, College Park, MD, 2017
- Nonparametric Data Assimilation for Weather Research and Forecasting, *University of Miami, Department of Computer Science*, Miami, FL, 2017
- Storm-Scale Weather Analysis and Prediction Using a Nonparametric Filter, *University of Arizona, Department of Mathematics*, Tucson, AZ, 2016
- Progress Toward the Development of a Nonlinear Filter for High-Dimensional Data Assimilation in Geoscience, *Penn State University, Center for Advanced Data Assimilation and Predictability Techniques*, University Park, PA, 2016
- Hybrid and Coupling of Ensemble and Variational Data Assimilation: An Informative Comparison of Adjoint- and Ensemble-Based Four-Dimensional Strategies, *Penn State University, Center for Advanced Data Assimilation and Predictability Techniques*, University Park, PA, 2016
- Probabilistic Storm-Scale Analysis and Prediction Using a Nonparametric Ensemble Filter: Implications for Tropical Cyclone Forecasting, *NOAA Atlantic Oceanographic and Meteorological Laboratory*, Miami, FL, 2016
- An Efficient Nonparametric Data Assimilation Method for Atmospheric Research and Ensemble Forecasting. *National Weather Center*, Norman, OK, 2016

- Efficient Nonparametric Data Assimilation for Atmospheric Research and Prediction. *Florida State University, Department of Earth, Ocean and Atmospheric Science*, Tallahassee, FL, 2016
- A Localized Particle Filter for Data Assimilation in High-dimensional Nonlinear Systems. *STATMOS Summer School in Data Assimilation*, Boulder, CO, 2015
- Hybrid and Coupling of Ensemble and Variational Data Assimilation. 12th *CAS-TWAS-WMO Forum: Data Assimilation Summer School*, Beijing, China, 2015
- Introduction to NCAR Data Assimilation Research Testbed (DART). 12th *CAS-TWAS-WMO Forum: Data Assimilation Summer School*, Beijing, China, 2015
- A Localized Particle Filter for Large Dimensional State Estimation. 12th *CAS-TWAS-WMO Forum: Coupled Data Assimilation Symposium*, Beijing, China, 2015
- Can We do Better Than the Kalman Filter? A Localized Particle Filter for Large Dimensional State Estimation. *Peking University, Department of Atmospheric and Oceanic Sciences*, Beijing, China, 2015
- A Localized Particle Filter for Large Dimensional State Estimation. *Chinese Academy of Meteorological Sciences*, Beijing, China, 2015
- A Localized Particle Filter for High-dimensional Nonlinear Systems. *Cooperative Institute for Research in the Atmosphere*, Fort Collins, CO, 2015
- Ensemble Filtering for Large-Dimensional Nonlinear Systems. *Penn State University, Department of Statistics*, University Park, PA, 2014
- Hybrid Data Assimilation for Tropical Cyclone Analysis and Prediction. *Stony Brook University, Department of Marine and Atmospheric Sciences*, Stony Brook, NY, 2014.

FUNDED GRANTS

NOAA: Non-Gaussian Ensemble Data Assimilation within a Rapidly Updating Global Forecast System. **PI: J. Poterjoy**, Award #TBD, 9/1/2023 – 8/31/2025.

NOAA CISESS: Advancing the NOAA Unified Forecast System through Improvements in Cloud Microphysics and Novel Sea Ice Data Assimilation Developments. **Task Leader: J. Poterjoy**. Award #NA19NES432000, \$335,000, 8/1/2023 – 6/30/2024.

NOAA: Multi-institution Collaborative Proposal: Integration of a Fully Functional Atmospheric UFS-HAFS into JEDI with Weakly Coupled Ocean Data Assimilation Capability. **PI: J. Poterjoy**, Award #NA22OAR4590184, \$299,976, 9/1/2022 – 8/31/2025.

NASA: New sea ice and ice sheet OSSE frameworks for determining ice topography science requirements from a future STV mission, PI: Alex Petty, (**Co-I: J. Poterjoy**), Award #80NSSC22K1112, \$1,200,000, 8/15/2022 – 8/14/2025.

NSF: Online uncertainty quantification for novel atmospheric measurements. **PI: J. Poterjoy**, Award #AGS2136969, \$413,678, 1/1/2022 – 12/31/2024.

NOAA CISESS: Advancing NOAA Earth System Modeling Efforts through Improvements in Model Physics and Sea Ice Data Assimilation. **Task Leader: J. Poterjoy**. Award #NA19NES432000, \$320,000, 9/1/2021 – 8/31/2022.

NOAA: HU-2 Accelerate the Development of the Hurricane Analysis and Forecasting System (HAFS). **PI: J. Poterjoy**. Award #NA20OAR4600281, \$250,000, 7/1/2020 – 7/1/2022.

NOAA CISESS: Improving Hurricane Predictions Through Advanced Data Assimilation, Ensemble Forecasting, and Observing System Design. **Task Leader: J. Poterjoy**. Award #NA19NES432000, \$137,602, 7/1/2019 – 6/30/2022.

NSF CAREER: Improving Convective-Scale Weather Prediction through Advanced Bayesian Filtering, Verification, and Uncertainty Quantification. **PI: J. Poterjoy**, Award #AGS1848363, \$548,222, 3/29/2019 – 3/30/2024.

AWARDED COMPUTING GRANTS

NCAR/CISL HPC Computing Proposal: Bayesian filtering for Convective-scale Weather Prediction Through Large Monte Carlo Simulations. **PI: J. Poterjoy**, 17.2 M core hours, 10/20/2020 – 3/30/2024.

POSTDOC ADVISING

Nick Szapiro (UMD/ESSIC), 2022 – present
Deanna Easley (UMD/ESSIC), 2022 – 2023

GRADUATE ADVISING * Indicates co-advised student

Craig Schwartz (UMD/NCAR), Ph.D. completed, Fall 2021

Title: *“An evaluation of convection-allowing ensemble forecast sensitivity to initial conditions.”*

Andrew Walsworth (UMD), M.S. completed, Spring 2022

Title: *“Effectiveness of observation error estimation methods under relaxed assumptions”*

Benjamin Sheppard (UMD), M.S. completed, Spring 2023

Title: *“Implications of non-Gaussian data assimilation for probabilistic prediction using Ensembles.”*

Joshua McCurry (UMD), Ph.D. student, 2019 – present

Kenta Kurosawa (UMD), Ph.D. student, 2019 – present

Joeseph Knisely (UMD), Ph.D. student, 2020 – present

Henry Santer (UMD), Ph.D. student, 2021 – present

*Sarah Loughran (UMD), Ph.D. student, 2021 – present

*Gabrielle Linscott (UMD), Ph.D. student, 2022 – present

*Gillian Felton (UMD), M.S. student, 2022 – present

Alisha Wellington (UMD), M.S. student, 2022 – present

UNDERGRADUATE ADVISING

Randall Bowers (UMD), Senior thesis completed, Spring 2023

Thesis title: *“Probabilistic Predictions for Tropical Cyclones Explored Using Contour Band Depth”*

Henry Santer (UMD), Summer internship (CISESS), June – August 2021

Research topic: *“Visualizing Ensemble Uncertainty with Contour Boxplots”*

Charles Kropiewnicki (UMD), Senior thesis completed, Spring 2021

Thesis title: *“Impact of Forecast Error Covariance on Ensemble Model Accuracy.”*

Gavin Harrison (UMD), Senior thesis completed, Spring 2021

Thesis title: *“Hurricane Nowcasting With Particle Filters.”*

Katriella Tenembaum (UMD), Senior thesis completed, Spring 2020

Thesis title: “*Exploring Imbalance Introduced by EnKFs in Tropical Cyclone Analyses.*”
Audrey Nash (UMD), Senior thesis completed, Spring 2020

Thesis title: “*Forecast Challenges Posed by Convective Outbreaks Associated with Landfalling Hurricanes.*”

DISSERTATION COMMITTEES

Emmanuel Dibia (UMD), Current Ph.D. student
Vitaly Kholodovsky (UMD), Current Ph.D. student
Jhayron Steven Perez Carrasquilla (UMD), Current Ph.D. student
Donald Lippi (UMD), Ph.D. completed 2023
Chu-Chung Cheng (UMD), Ph.D. completed 2023
Cheng Da (UMD), Ph.D. completed 2022
Eli Denis (UMD), Ph.D. completed 2021
Benjamin Johnson (UMD), Ph.D. completed 2020
Matthew Wespetal (UMD), Ph.D. completed 2019
Dave Groff (UMD), Ph.D. completed 2019
William Miller (UMD), Ph.D. completed 2019

UNIVERSITY TEACHING

Instructor, University of Maryland, AOSC 470/600, *Synoptic Meteorology*, Fall 2019 – 2023

- This class is taught concurrently at the undergraduate and graduate level.
- General topics covered in class: numerical modeling and observational analysis, data assimilation, review of governing equations for the atmosphere, quasi-geostrophic theory, frontogenesis, extratropical waves and cyclones, weather map discussions

Instructor, University of Maryland, AOSC 472/602, *Mesoscale Meteorology*, Spring 2020 – 2022

- This class is taught concurrently at the undergraduate and graduate level.
- General topics covered in class: mesoscale instabilities, semi-geostrophic approximations, the planetary boundary layer, mesoscale air mass boundaries, convective initialization, convective organization, mesoscale convective systems, and tornadoes

Co-Instructor, Pennsylvania State University, METEO 597B, *Data Assimilation*, Spring 2013

- Lecture topics: optimal interpolation, EnKF, 3DVar, 4DVar, adjoint sensitivity analysis, ensemble sensitivity analysis, observation impact, parameter estimation, and hybrid data assimilation
- Additional tasks: assisted in the development of the course curriculum, and constructed and graded programming lab assignments

Guest Lecturer, University of Oklahoma, METR 6313, *Advanced Topics in Data Assimilation*, Spring 2017

- Lecture topics: Introduction to particle filters and the local particle filter

Guest Lecturer, Pennsylvania State University, METEO 526, *Numerical Weather Prediction*, Spring 2011

- Lecture topics: Ensemble Kalman filters and Lorenz (1963) model tutorial

Teaching Assistant, Pennsylvania State University, METEO 474, *Computer Methods in Meteorological Analysis and Forecasting*, Spring 2011

- Lab assistant for an undergraduate data mining course

- Tasks: graded labs, answered questions from students, and organized a capstone project

HONORS AND AWARDS

- National Science Foundation CAREER Award, 2019
- National Research Council Postdoctoral Fellowship, NOAA Atlantic Oceanographic and Meteorological Laboratory, 2017 – 2018
- Advanced Study Program Postdoctoral Fellowship, National Center for Atmospheric Research, 2014 – 2016

PROFESSIONAL ACTIVITIES

- Associate editor, AMS Monthly Weather Review, 2016 – present
- Associate editor, AGU Journal of Advances in Modeling Earth Systems, 2021 – present
- Member, AMS Committee on Weather Analysis and Forecasting, 2022 – present
- Science Advisory Board Member, NOAA/NCAR/USAF Developmental Testbed Center (DTC), 2022 – present
- Member, University of Maryland Burgers Program for Fluid Dynamics, 2020 – present
- Member, NCAR High Performance Computing User Group 2021 – present
- Program committee member, *35th AMS Conference on Hurricanes and Tropical Meteorology*, New Orleans, LA, 2022
- Program committee member, *8th EnKF Workshop*, Sainte-Adele, Canada, 2018
- Invited speaker, *NSF “National Strategic Computing Initiative” meeting*, Arlington, VA, 2017
- Program committee member, *7th EnKF Workshop*, University Park, PA, 2016
- Lecturer, *CAS-TWAS-WMO Data Assimilation Summer School*, Beijing, China, 2015
- Lecturer, *STATMOS Summer School in Data Assimilation*, Boulder, CO, 2015
- Co-author, *8th International Workshop on Tropical Cyclones: Subtopic 4.3 – structure change forecasting*, 2014
- Invited speaker, *NSF “Big Weather” workshop*, Boulder, CO, 2014
- Reviewer for numerous scientific journals, including (1) *Advances in Atmospheric Science*, (2) *Advances in Meteorology*, (3) *Atmospheric Research*, (4) *Journal of Advances in Modeling Earth Systems*, (5) *Journal of Applied Meteorology and Climatology*, (6) *Journal of Atmospheric Sciences*, (7) *Bulletin of the American Meteorological Society*, (8) *Journal of Climate*, (9) *Journal of Computational Science*, (10) *Journal of Geophysical Research – Atmospheres*, (11) *Monthly Weather Review*, (12) *Physica D: Nonlinear Phenomenon*, (13) *Ocean Dynamics*, (14) *Natural Hazards*, (15) *Quarterly Journal of the Royal Meteorological Society*, (16) *Tellus A: Dynamic Meteorology and Oceanography*, (17) *Weather and Forecasting*, (18) *Journal of Applied Mathematics and Computation*, (19) *Journal of the Meteorological Society of Japan*, (20) *SIAM/ASA Journal on Uncertainty Quantification*
- Primary developer of the local particle filter, a nonlinear data assimilation technique available freely through the open source NCAR Data Assimilation Research Testbed (DART) software package

UNIVERSITY AND DEPARTMENT SERVICE

- Co-chair, Graduate Admissions Committee, 2019 – present
- Voting Representative, UMD University Corporation for Atmospheric Research (UCAR), 2019 – present
- Co-author, UMD proposal for entrance into American Geophysical Union BRIDGE Program
- Advisor, University of Maryland Numerical Weather Prediction Club, 2020 – present

- Member, Undergraduate Curriculum Committee, 2021 – present